Mn025) +44+ +2e -> Mn2+ (2) +2110.

Mn04 20 + 240 + 3e -> Mn025 + 404-

- 1. Calculate the standard cell voltages and write the overall chemical reactions for cells which consist of the following half-cells
 - Zn2+/Zn and Sn2+/Sn
 - Cr3+/Cr and Ag+/Ag **(b)**
 - Hg2+/Hg and Cu2+/Cu (c)
 - Mg2+/Mg and Cu2+/Cu (b)
 - Mg2+/Mg and Ag+/Ag (e)
 - Fe3+/Fe2+ and Cr2O72-/Cr3+ (Cr2O72- is acidified) $= \frac{3}{4} + \frac{1}{2} + \frac{2}{4} + \frac{$ (f)
 - Cl2/Cl- and I2/I-(g)
- 2. Predict whether the following reactions could occur under standard conditions:

(a)
$$2MnO_4^+ + 10I^- + 16H^+ \rightarrow 2Mn^{2+} + 5I_2 + 8H_2O$$

(b)
$$\operatorname{Sn}^{4+} + \operatorname{H}_2\operatorname{O}_2 \to \operatorname{Sn}^{2+} + 2\operatorname{H}^+ + \operatorname{O}_2$$

(c)
$$Cr_2O_7^{2-} + 6F^- + 14H^+ \rightarrow 2Cr^{3+} + 3F_2 + 7H_2O$$

(d)
$$Cu + 2H^+ \rightarrow Cu^{2+} + H_2$$

(e)
$$2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$$

Hg/4 + 2e -> Hg(1) E° +0.85 V.

- Which of the following species could react with 1 mol L-1 HCl to form hydrogen 3. (a)
 - (ī) Cu
 - (ii) Mg
 - (iii) Hg
 - (iv) Ag
 - (v) Sn

 - From the table of reduction potentials supplied, identify (b)
 - a reducing agent which could convert Pb2+ to Pb, but not Co2+ to Co.
 - (ii) an oxidising agent which could convert CI- to Cl2, but not F- to F2.
 - (iii) a reductant which could convert H+ to H2, but not H2O to H2.
 - (iv) an oxidant which could convert Ag to Ag+, but not Hg to Hg2+.
 - (v) a reductant which could convert acidified MnO4- to Mn2+, but not acidified Cr2O72- to Cr3+.
- 4. Predict whether the following disproportionation reactions could occur in aqueous solution:
 - (a) copper(I) ion to copper(II) ion and copper metal:
 - (b) Iron(II) ion to iron(III) ion and iron metal
 - (c) hydrogen peroxide to water and oxygen gas
- Cutte_> Cut +0,121
- (d)
- manganese dioxide to permanganate ion and manganese(II) ion HC(0 hyporthorous acid: 5. Predict whether reactions could occur in each of the following. Assume standard conditions.
- Chlorine gas is bubbled through potassium bromide solution.
 - **(b)** Iron(II) nitrate is mixed with sodium iodide.

 - (c) Aluminium is added to hydrochloric acid.
 - An iron nail is placed in a tin(II) chloride solution.
 - (e) An iron(II) sulfate solution is placed in a nickel container.
 - (f) Hydrogen sulfide is bubbled through an acidified potassium dichromate solution.
 - (g) Chlorine gas is bubbled through an acidified solution of barium nitrate.
 - (h) Chlorine gas is bubbled through an acidified solution of iron(II) bromide.

STAWA SET 19: SOLUTIONS

Set 19

1. (a)
$$Zn + Sn^{2+} \rightarrow Zn^{2+} + Sn$$
 , +0.62V

(b)
$$3Ag^+ + Cr \rightarrow 3Ag + Cr^{3+}$$
 , +1.54V

(c)
$$Hg^{2+} + Cu \rightarrow Hg + Cu^{2+}$$
, +0.51V

(d)
$$Mg + Cu^{2+} \rightarrow Mg^{2+} + Cu$$
 , +2.70V

(e)
$$Mg + 2Ag^+ \rightarrow Mg^{2+} + 2Ag^- + 3.16V$$

(f)
$$Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+}$$
 , +0.56V

(g)
$$Cl_2 + 2l^- \rightarrow 2Cl^- + l_2$$
 , +0.82V

(b) No, -0.53V

(c) No, -1.54V

(d) No, -0.34V

(e) Yes, +0.62V

- (b) (i) Sn or Ni
 - (ii) H₂O₂ or MnO₄ (these are common oxidants, both must be acidified)

- (iv) 0₂/4H+
- (v) Au, Cl7/H2O, Cl7

5. (a)
$$Cl_2 + 2Br^2 \rightarrow 2Cl^2 + Br_2$$
, $+0.27V$

- (b) No, -1.21V
- (b) No reaction

(c)
$$2AI + 6H^+ \rightarrow 2AI^{3+} + 3H_2$$
, +1.66V

(d) Fe +
$$Sn^{2+} \rightarrow Fe^{2+} + Sn + 0.30V$$

(f)
$$Cr_2O_7^{2-} + 3H_2S + 8H^+ \rightarrow 2Cr^{3+} + 3S + 7H_2O_1 + 1.19V$$

- (g) No reaction
- (h) Both Br and Fe2+ are oxidised